Home Precious Stones Quasi-experimental evaluation of recent mining developments as a driver of deforestation in Zambia

Quasi-experimental evaluation of recent mining developments as a driver of deforestation in Zambia

0

[ad_1]

  • Prior, T., Giurco, D., Mudd, G., Mason, L. & Behrisch, J. Useful resource depletion, peak minerals and the implications for sustainable useful resource administration. Glob. Environ. Chang. 22, 577–587 (2012).


    Google Scholar
     

  • Worldwide Council on Mining and Metals. Function of mining in nationwide economies Mining Contribution Index (MCI) fifth Version. (2020).

  • Sonter, L. J., Ali, S. H. & Watson, J. E. M. Mining and biodiversity: Key points and analysis wants in conservation science. Proc. R. Soc. B: Biol. Sci. 285, 20181926 (2018).


    Google Scholar
     

  • Werner, T. T., Bebbington, A. & Gregory, G. Assessing impacts of mining: Latest contributions from GIS and distant sensing. Extr. Ind. Soc. 6, 993–1012 (2019).


    Google Scholar
     

  • Murguía, D. I., Bringezu, S. & Schaldach, R. World direct pressures on biodiversity by large-scale steel mining: Spatial distribution and implications for conservation. J. Environ. Manag. 180, 409–420 (2016).


    Google Scholar
     

  • Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. Ok. Renewable vitality manufacturing will exacerbate mining threats to biodiversity. Nat. Commun. 11, 6–11 (2020).


    Google Scholar
     

  • González-González, A., Clerici, N. & Quesada, B. Rising mining contribution to Colombian deforestation. Environmental Analysis Letters 16(6), 064046 (2021).

    ADS 

    Google Scholar
     

  • Bebbington, A. J. et al. Useful resource extraction and infrastructure threaten forest cowl and neighborhood rights. Proc. Natl. Acad. Sci. 115, 13164–13173 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, D. P. et al. Mining and the African atmosphere. Conserv. Lett. 7, 302–311 (2014).


    Google Scholar
     

  • Werner, T. T. et al. World-scale distant sensing of mine areas and evaluation of things explaining their extent. Glob. Environ. Chang. 60, 102007 (2020).


    Google Scholar
     

  • World Financial institution. Forest-Good Mining: Giant-scale mining on forests (LSM). http://hdl.deal with.web/10986/32025 (2019).

  • Siqueira-Homosexual, J., Santos, D., Nascimento, W. R., Souza-Filho, P. W. M. & Sánchez, L. E. Investigating modifications driving cumulative impacts on native vegetation in mining areas within the Northeastern Brazilian Amazon. Environ. Manag. 69, 438–448 (2022).


    Google Scholar
     

  • Mwitwa, J., German, L., Muimba-Kankolongo, A. & Puntodewo, A. Governance and sustainability challenges in landscapes formed by mining: Mining-forestry linkages and impacts within the copper belt of zambia and the DR congo. For. Coverage Econ. 25, 19–30 (2012).


    Google Scholar
     

  • Johnson, C. J., Venter, O., Ray, J. C. & Watson, J. E. M. Progress-inducing infrastructure represents transformative but ignored keystone environmental selections. Conserv. Lett. 13, 1–7 (2020).


    Google Scholar
     

  • Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental prices of Africa’s large “growth corridors”. Curr. Biol. 25, 3202–3208 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Golden Kroner, R. E. et al. The unsure way forward for protected lands and waters. Science 364, 881–886 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Devenish, Ok., Desbureaux, S., Willcock, S. & Jones, J. P. G. On monitor to realize no web lack of forest at Madagascar’s greatest mine. Nat. Maintain. https://doi.org/10.1038/s41893-022-00850-7 (2022).

    Article 

    Google Scholar
     

  • Betts, M. G. et al. World forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Haddad, N. M. et al. Habitat fragmentation and its lasting influence on Earth’s ecosystems. Sci. Adv. 1, 1–9 (2015).


    Google Scholar
     

  • Achard, F. et al. Dedication of tropical deforestation charges and associated carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).

    ADS 

    Google Scholar
     

  • Day, M., Gumbo, D., Moombe, Ok. B., Wijaya, A., Sunderland, T. Zambia nation profile: Monitoring, reporting and verification for REDD+. (2014).

  • Syampungani, S., Chirwa, P. W., Akinnifesi, F. Ok., Sileshi, G. & Ajayi, O. C. The Miombo woodlands on the cross roads: Potential threats, sustainable livelihoods, coverage gaps and challenges. Nat. Res. Discussion board 33, 150–159 (2009).


    Google Scholar
     

  • Home, C. The influence of mining on Forests: info wants for efficient coverage responses. Vitality Environ. Resour. Meet. Summ. 44, 1–10 (2015).


    Google Scholar
     

  • Nicolau, A. P., Herndon, Ok., Flores-Anderson, A. & Griffin, R. A spatial sample evaluation of forest loss within the Madre de Dios area Peru. Environ. Res. Lett. 14(12), 124045 (2019).

    ADS 

    Google Scholar
     

  • Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated charges of gold mining within the Amazon revealed by high-resolution monitoring. Proc. Natl. Acad. Sci. USA. 110, 18454–18459 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swenson, J. J., Carter, C. E., Domec, J. C. & Delgado, C. I. Gold mining within the peruvian amazon: World costs, deforestation, and mercury imports. PLoS ONE 6(4), e18875 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espejo, J. C. et al. Deforestation and forest degradation resulting from gold mining within the Peruvian Amazon: A 34-year perspective. Distant Sens. 10, 1–17 (2018).


    Google Scholar
     

  • Barenblitt, A. et al. The massive footprint of small-scale artisanal gold mining in Ghana. Sci. Whole Environ. 781, 146644 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gbedzi, D. D. et al. Impression of mining on land use land cowl change and water high quality within the Asutifi North District of Ghana West Africa. Environ. Chall. 6, 100441 (2022).

    CAS 

    Google Scholar
     

  • Obodai, J., Adjei, Ok. A., Odai, S. N. & Lumor, M. Land use/land cowl dynamics utilizing landsat knowledge in a gold mining basin-the Ankobra, Ghana. Distant Sens. Appl. Soc. Environ.t 13, 247–256 (2019).


    Google Scholar
     

  • Schueler, V., Kuemmerle, T. & Schröder, H. Impacts of floor gold mining on land use techniques in Western Ghana. Ambio 40, 528–539 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonter, L. J. et al. Mining drives in depth deforestation within the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butsic, V., Baumann, M., Shortland, A., Walker, S. & Kuemmerle, T. Conservation and battle within the democratic republic of Congo: The impacts of warfare, mining, and guarded areas on deforestation. Biol. Cons. 191, 266–273 (2015).


    Google Scholar
     

  • Ranjan, R. Assessing the influence of mining on deforestation in India. Resour. Coverage 60, 23–35 (2019).


    Google Scholar
     

  • Zambia EITI Council. Zambia Extractive Industries Transparency Initiative Zambia Report. (2019).

  • Pelletier, J. et al. Carbon sink regardless of massive deforestation in African tropical dry forests (miombo woodlands). Environ. Res. Lett. 13(3), 09401 (2018).


    Google Scholar
     

  • Hansen, M. C. et al. Excessive-resolution world maps of Twenty first-century forest cowl change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 00, 1–12 (2019).

    CAS 

    Google Scholar
     

  • Ho, D. E., Imai, Ok., King, G. & Stuart, E. A. MatchIt: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).


    Google Scholar
     

  • Handavu, F., Chirwa, P. W. C. & Syampungani, S. Socio-economic elements influencing land-use and land-cover modifications within the miombo woodlands of the Copperbelt province in Zambia. For. Coverage Econ. 100, 75–94 (2019).


    Google Scholar
     

  • Mitchard, E., Viergever, Ok., Morel, V., Tipper, R. Evaluation of the accuracy of College of Maryland (Hansen et al.) Forest Loss Information in 2 ICF undertaking areas–part of a undertaking that examined an ICF indicator methodology. (2015).

  • McNicol, I. M., Ryan, C. M., Mitchard, E. T. A. Carbon losses from deforestation and widespread degradation offset by in depth development in African woodlands. Nat. Commun. 9, (2018).

  • Giljum, S. et al. A pantropical evaluation of deforestation attributable to industrial mining. Proc. Natl. Acad. Sci. 119, e2118273119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonter, L. J., Moran, C. J., Barrett, D. J. & Soares-Filho, B. S. Processes of land use change in mining areas. J. Clear. Prod. 84, 494–501 (2014).


    Google Scholar
     

  • West Lunga Conservation Challenge. West Lunga Conservation Challenge. https://www.westlunga.org/ourwork (2021).

  • Swedwatch. Copper with a price. https://swedwatch.org/wp-content/uploads/2019/05/Copper-with-a-Price-94_Zambia_191210.pdf (2019).

  • Muhire, I. et al. The environmental impacts of mining on Gishwati Protected Reserve in Rwanda. Environ. Monit. Assess. 193(9), 1–24 (2021).


    Google Scholar
     

  • Chanda, S. & Moono, W. The Impact of Mining on the Setting : A case Examine of Kankoyo Township of Mufulira District of the Republic of Zambia (2017).

  • Muma, D., Besa, B., Manchisi, J. & Banda, W. Results of mining operations on air and water high quality in Mufulira district of Zambia: A case research of Kankoyo Township. J. South Afr. Inst. Min. Metall. 120, 287–298 (2020).

    CAS 

    Google Scholar
     

  • Islam, Ok. & Murakami, S. World-scale influence evaluation of mine tailings dam failures: 1915–2020. Glob. Environ. Chang. 70, 102361 (2021).


    Google Scholar
     

  • Takam Tiamgne, X., Kalaba, F. Ok. & Nyirenda, V. R. Family livelihood vulnerability to mining in Zambia’s solwezi copper mining district. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2021.101032 (2021).

    Article 

    Google Scholar
     

  • Desbureaux, S. Subjective modeling selections and the robustness of influence evaluations in conservation science. Conserv. Biol. 35(5), 1–12 (2021).


    Google Scholar
     

  • Ahmed, A. I., Bryant, R. G. & Edwards, D. P. The place are mines situated in sub Saharan Africa and the way have they expanded additional time?. Land Degrad. Dev. 32, 112–122 (2021).


    Google Scholar
     

  • Nakajima, Ok. et al. World distribution of fabric consumption: Nickel, copper, and iron. Resour. Conserv. Recycl. 133, 369–374 (2018).


    Google Scholar
     

  • GADM. GADM database of World Administrative Areas model 3.4. www.gadm.org (2018).

  • Authorities of Zambia. The Forests Act, 2015. (2015).

  • World Forest Watch. World Forest Watch. https://www.globalforestwatch.org/ (2020).

  • Bond, I., Chambwera, M., Jones, B., Chundama, M. & Nhantumbo, I. REDD+in dryland forests Points and prospects for pro-poor REDD within the miombo woodlands of southern Africa. (2010).

  • Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and pure techniques. Proc. Natl. Acad. Sci. USA. 116, 5311–5318 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuart, E. A. Matching strategies for causal inference: A evaluate and a glance ahead. Stat. Sci. 25, 1–21 (2010).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vinya, R., Syampungani, S., Kasumu, E. C. C., Monde, C., Kasubika, R. Preliminary research on the drivers of deforestation and potential for REDD+ in Zambia. A consultancy report ready for Forestry Division and FAO underneath the nationwide UN-REDD+ Programme Ministry of Lands & Pure Sources (2012) doi:https://doi.org/10.1128/AAC.03728-14.

  • Nationwide Imagery and Mapping Company. Vector map degree 0 (VMAP0). (2000).

  • Middle for Worldwide Earth Science Data Community (CIESIN), Columbia College and Data Expertise Outreach Providers (ITOS) & College of Georgia. World Roads Open Entry Information Set, Model 1 (gROADSv1). (2013).

  • Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E. Gap-filled SRTM for the globe Model 4, accessible from the CGIAR-CSI SRTM 90m Database. (2008).

  • WorldPop (www.worldpop.org – Faculty of Geography and Environmental Science – College of Southampton; Division of Geography and Geosciences – College of Louisville; Departement de Geographie–Universite de Namur) and Middle for Worldwide Earth Science Data Community (CIESIN) Columbia College. World Excessive Decision Inhabitants Denominators Challenge–Funded by The Invoice and Melinda Gates Basis. doi:https://doi.org/10.5258/SOTON/WP00675 (2018).

  • Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Space Month-to-month L3 World 500m SIN Grid V006. NASA EOSDIS Land Course of. DAAC https://doi.org/10.5067/MODIS/MCD64A1.006 (2015).

  • HarvestChoice, I. F. P. R. I. (IFPRI); Minnesota, U. of. CELL5M: A Multidisciplinary Geospatial Database for Africa South of the Sahara. DRAFT VERS. Harvard Dataverse. https://doi.org/10.7910/DVN/G4TBLF.

  • IUCN and UNEP-WCMC. The World Database on Protected Areas (WDPA). November 2018. www.protectedplanet.web (2018).

  • Iacus, S. M., King, G. & Porro, G. cem : Software program for coarsened actual matching. J. Stat. Smooth. 30, 1–27 (2009).


    Google Scholar
     

  • King, G. & Nielsen, R. Why propensity scores shouldn’t be used for matching. Polit. Anal. 27, 435–454 (2019).


    Google Scholar
     

  • Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian fashions through the use of built-in nested laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol 71, 319–392 (2009).

    MathSciNet 
    MATH 

    Google Scholar
     

  • R Core Crew. R: A language and atmosphere for statistical computing. Preprint at (2019).

  • Lindgren, F. & Rue, H. Bayesian Spatial Modelling with R–INLA. J. Stat. Softw. 63, 1–25 (2015).


    Google Scholar
     

  • Krainski, E. T. et al. Superior Spatial Modeling with Stochastic Partial Differential Equations Utilizing R and INLA (Chapman and Corridor/CRC Press, 2020).


    Google Scholar
     

  • Gómez-Rubio, V. Bayesian inference with INLA (Chapman and Corridor/CRC Press, 2020).

    MATH 

    Google Scholar
     

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Degree/Combined) Regression Fashions (2022).

  • [ad_2]

    Source_link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here